Symmetric Three-Term Recurrence Equations and Their Symplectic Structure
نویسندگان
چکیده
We revive the study of the symmetric three-term recurrence equations. Our main result shows that these equations have a natural symplectic structure, that is, every symmetric three-term recurrence equation is a special discrete symplectic system. The assumptions on the coefficients in this paper are weaker and more natural than those in the current literature. In addition, our result implies that symmetric three-term recurrence equations are completely equivalent with Jacobi difference equations arising in the discrete calculus of variations. Presented applications of this study include the Riccati equation and inequality, detailed Sturmian separation and comparison theorems, and the eigenvalue theory for these three-term recurrence and Jacobi equations.
منابع مشابه
Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملSymmetries of the Space of Linear Symplectic Connections
There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen–Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred...
متن کاملDirac submanifolds and Poisson involutions
Dirac submanifolds are a natural generalization in the Poisson category for symplectic submanifolds of a symplectic manifold. In a certain sense they correspond to symplectic subgroupoids of the symplectic groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable locus of a Poisson involution. In this paper, we provide a general study for these submanifolds i...
متن کاملTransverse intersection of invariant manifolds in perturbed multi-symplectic systems
A multi-symplectic system is a PDE with a Hamiltonian structure in both temporal and spatial variables. This paper considers spatially periodic perturbations of symmetric multi-symplectic systems. Due their structure, unperturbed multi-symplectic systems often have families of solitary waves or front solutions, which together with the additional symmetries lead to large invariant manifolds. Per...
متن کاملHermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum
Given the Hermitian, symmetric and symplectic ensembles, it is shown that the probability that the spectrum belongs to one or several intervals satisfies a nonlinear PDE. This is done for the three classical ensembles: Gaussian, Laguerre and Jacobi. For the Hermitian ensemble, the PDE (in the boundary points of the intervals) is related to the Toda lattice and the KP equation, whereas for the s...
متن کامل